C.U.SHAH UNIVERSITY Summer Examination-2016

Subject Name: DIGITAL CIRCUITS
 Subject Code: 4TE03DCI1

Branch: IC/EE ENGINEERING

Semester: III
Date: 26/04/2016
Time: 02:30 To 05:30
Marks: 70

Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Q-1 Attempt the following questions:

a What is the octal equivalent of the binary number: 10111101?
(a)675
(b)275
(c) 572
(d) 573.
b $\quad(10101)_{2}$ is
(a) $(21)_{10}$
(b) $(69)_{10}$
(c) $(41)_{10}$
(d) $-(5)_{10}$
c The number of Boolean functions that can be generated by n variables is equal to
(a) $2^{\text {n }}$
(b) $2^{2 n}$
(c) 2^{n-1}
(d) -2^{n}
d This of the following gate is a two-level logic gate.
(a) OR gate
(b) NAND gate
(c) EXCLUSIVE OR
(d) NOT gate.
gate
e The output of an exclusive-NOR gate is 1 . Which input combination is correct?
(a) $\mathrm{A}=1, \mathrm{~B}=0$
(b) $\mathrm{A}=0, \mathrm{~B}=1$
(c) $\mathrm{A}=0, \mathrm{~B}=0$
(d)none of the above
f The inverter can be produced with how many NAND gates?
(a) 1
(b) 2
(c) 3
(d) 4
g Which of the following expressions is in the sum-of-products (SOP) form?
(a) $(A+B)(C+D)$
(b) $(A) B(C D)$
(c) $A B(C D)$
(d) $A B+C D$
h The commutative law of Boolean addition states that $A+B=A \times B$.
(a) True
(b) False
i The inverter can be produced with how many NAND gates?
(a) 1
(b) 2
(c) 3
(d) 4
j When grouping cells within a K-map, the cells must be combined in groups of
\qquad
(a) $1,2,4,8$, etc.
(b) 4 s
(c)3s
$\mathbf{k} \quad$ A Karnaugh map is a systematic way of reducing which type of expression?
(a)product-of-sums
(b)exclusive NOR
(c) sum-of-products
(d)those with over bars

1 In a parallel in/parallel out shift register, $D_{0}=1, D_{1}=1, D_{2}=1$, and $D_{3}=0$. After three clock pulses, the data outputs are \qquad .
(a)1110
(b)0001
(c) 1100
(d)1000
m How many clock pulses will be required to completely load serially a 5-bit shift register?
(a)2
(b)3
(c) 4
(d)5
n What is the difference between a shift-right register and a shift-left register?
(a)There is no difference.
(b) The direction of the shift

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions

A State and prove De Morgan's theorem.
B Realize X-OR operation using a) only NAND logic b) NOR logic c) AOI logic

A i) Convert (98.72) 10 to binary.
ii) Convert (1101.101)2 to decimal.
iii) Convert (214)10 to octal.
iv) Convert (3509) 10 to Hexadecimal.
v) Convert (111011100)2 to octal.
vi) Convert (634)8 to binary.
vii) Convert (3FD) н to binary.

B i) Prove $A+B=(A+B)(A+C)$
ii) Simplify $\mathrm{Y}=\left(\mathrm{A}^{\prime}+\mathrm{B}+\mathrm{C}\right)\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}\right)$

Q-4 Attempt all questions

A Describe the operation performed by the following arithmetic circuits
(a)Half Subtractor d) Full Subtractor

B Simplify the following Boolean function using K-map and realize using basic gates.
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,1,4,8,9,10)$
A Explain with diagram Ex-3 code to Grey code converter.
B Explain with diagram a BCD to 7-segmnet decoder.
Attempt all questions
A With neat sketch explain the operation of clocked RS flip flop.
B Draw and Explain the working of JK flip flop.
Attempt all questions
A With neat diagram explain the operation of 4- bit serial- in-parallel out Shift register.
B What is the difference between decoder and demultiplexer?
Attempt all questions

A Comparison of Counters and Registers.
B Explain Asynchronous ripple Counter.

