Enrollı	ment No:			Exam Seat No:				
				NIVERSI'				
	Su	ımmer l	Exam	ination-201	.6			
Subject Name: DIGITAL CIRCUITS Subject Code: 4TE03DCI1 Branch: IC/EE ENGINEERING								
Semest	er: III Date: 26/0	04/2016	Time: 02	2:30 To 05:30	Marks: 70			
Instruct	ions:							
(2) (3)	Use of Programmab Instructions written Draw neat diagrams Assume suitable dat	on main answ and figures (ver book	are strictly to be obe		_		
	Attempt the follow	ing question	s:			(14)		
a	-	•	e binary	number: 10111101?				
b	(a) 675 (10101) ₂ is	(b)275		(c) 572	(d) 573.			
D	$(a) (21)_{10}$	(b) (69) ₁₀		(c) $(41)_{10}$	$(d) - (5)_{10}$			
c	The number of Boo		s that can					
d	This of the followin (a) OR gate	g gate is a tw (b) NAND			OR (d) NOT gate.			
e	The output of an execution (a) A=1, B=0			•	nation is correct? (d)none of the above			
f	The inverter can be		h how m					
Œ	(a) 1 Which of the follow	(b) 2	ne ie in t	(c) 3	(d) 4			
g	(a) (A + B)(C + D)			(c) AB(CD)	(d) AB + CD			
h	The commutative la (a) True		*	' ' '	* *			
i	The inverter can be (a) 1	produced wit (b) 2	h how m	any NAND gates? (c) 3	(d) 4			
j	* *	` '	map, the	cells must be combi	ned in groups of			
_	(a) 1, 2, 4, 8, etc		2	(b) 4s	(c)3s			
k	A Karnaugh map is (a)product-of-sums	-	•	educing which type (c) sum-of-product	<u>-</u>			
l	In a parallel in/paral	llel out shift r	egister, I	$D_0 = 1, D_1 = 1, D_2 = 0$				
	three clock pulses, t (a)1110	he data outpu (b)0001	ts are	(c)1100	(d)1000			
			Page 1	2				

Q-1

		Attempt any four questions from Q-2 to Q-8				
Q-2		Attempt all questions	(14)			
	\mathbf{A}	State and prove De Morgan's theorem.				
	В	Realize X-OR operation using a) only NAND logic b) NOR logic c) AOI logic				
Q-3		Attempt all questions				
	\mathbf{A}	i) Convert (98.72)10 to binary.				
		ii) Convert (1101.101)2 to decimal.				
		iii) Convert (214)10 to octal.				
		iv) Convert (3509)10 to Hexadecimal.				
		v) Convert (111011100)2 to octal.				
		vi) Convert (634)8 to binary.				
		vii) Convert (3FD) н to binary.				
	В	i) Prove $A+B = (A+B)(A+C)$				
		ii) Simplify $Y=(A'+B+C)(A+B'+C)$	(14)			
Q-4		Attempt all questions				
	A					
		(a)Half Subtractor d) Full Subtractor				
	В	Simplify the following Boolean function using K-map and realize using basic gates.				
		$F(A,B,C,D) = \Sigma m(0,1,4,8,9,10)$				
Q-5		Attempt all questions	(14)			
		Explain with diagram Ex-3 code to Grey code converter.				
	В	Explain with diagram a BCD to 7-segmnet decoder.				
Q-6		Attempt all questions	(14)			
	A	1 1 1				
	В	8 · · · · · · · · · · · · · · · · · · ·				
Q-7		Attempt all questions	(14)			
	A					
	В	What is the difference between decoder and demultiplexer?				
Q-8		Attempt all questions	(14)			
	\mathbf{A}	Comparison of Counters and Registers.				
	В	Explain Asynchronous ripple Counter.				

How many clock pulses will be required to completely load serially a 5-bit shift

What is the difference between a shift-right register and a shift-left register?

(c)4

(b) The direction of the shift

(b)3

register? (a)2

(a)There is no difference.

n

